Comparative Efficiency Analysis of MPI Blocking
and Non-Blocking Communications with
Coarray Fortran

G. Reshetova*, V. Cheverda, V. Koinov

Institute of Computational Mathematics and
Mathematical Geophysics SB RAS,

Novosibirsk State University

Content

e Motivation

e Description of approaches
e Numerical implementation
e Conclusion and road map

Content

e Motivation

e Description of approaches
e Numerical implementation
e Conclusion and road map

Motivation

The MPI is the most widespread data exchange interface standard used in parallel
programming for clusters and supercomputers with many computer platforms.

The primary means of the MPlI communication between processes is passing messages
based on basic point-to-point blocking and non-blocking routines. The choice of the
optimal implementation of exchanges is essential to minimize the idle and transmission
times to achieve parallel algorithm efficiency.

We used three realizations of data exchange processes based on blocking, non-blocking
point-to-point MPI routines and new features of the Coarray Fortran technique to
determine the most efficient parallelization strategy.

Content

e Motivation

e Description of approaches
e Numerical implementation
e Conclusion and road map

Description of approaches.
Test problem.

Let us consider the acoustic wave propagation in heterogeneous media, de-
scribing a change of the wavefield pressure p(z,y, z.t) in the domain 2 x (0,7").
Suppose that a wavefield is excited by the source f(¢) located at the point
(rs,Ys, zs). This process in heterogeneous media is defined by the equation

1 1 62 0
pV - (pr) ;,ppf (1)

where ¢ is the velocity of a wave propagating in the medium, p is the density, p
is the acoustic pressure, and f is the volumetric-type point source.

Description of approaches.
Test problem.

By introducing a displacement velocity vector v = (v, v, -’uz)T, we can rep-
resent the second order acoustic wave equation (1) as the first order hyperbolic

system

v
- p =0,
Por T Vp =0,
1 op df
it Vo= —L 2
K Ot TV ot 2)

where k 1s the adiabatic compression modulus, associated with the velocity by the
formula v = v/ /p. The resulting system (2) has a symmetric hyperbolic form.,
and this advantage we use in constructing efficient finite difference schemes on
staggered grids.

Description of approaches.
Test problem.

By splitting the pressure p = (p;lj,p,_y)'T to a two-dimensional case, it is also

possible to rewrite (2) as a first order hyperbolic system

OV,
ot

dv,
Ot
OP,
Ot
P,
Ot

K—
dy

1 dp, Op,
_ p i pj)
p Ox Ox
1, 0p, 9Ip,
= =Lz g Ty,
p Oy Oy
v,
— _H'Crt“ + Elft
Ox
ov,
— e Y e Fy-

Numerical approach

There are several approaches to approximate first order acoustic wave equations (3).

Among the approaches used, we highlight finite element methods (FEM), spectral element methods (SEM)
and the finite difference method (FDM).

From a variety of numerical approaches, we choose the finite difference method on staggered grids. The

choice of this approach results from the system structure (3): the system equations form a symmetric first
order hyperbolic system of evolution equations.

In this case, finite difference schemes on staggered grids appear to be the most computationally efficient
approach [Virieux1986,Levander1988].

Finite Difference Method.
Staggered grid.

We followed Virieux and developed a second order scheme accurate in space and time on a
staggered grid. To excite specific waves, we define a volumetric-type source as product of
the Dirac delta function with respect to space

® 7
(Zi-1/2: Yi+1) | (Tiz1/2, Yi+1) > v

V2

(I.i_l.yj+1/2)./L"l .p b w® .(?l7n+l~?lj+l/2)

v 5y

(il.‘,‘_l/2e?/j) ('Tz.+l/27yj)

10

Finite Difference Method.
Staggered grid.

To excite specific waves, we define a volumetric-type source as product of the
Dirac delta function with respect to space

O — ooy — ys) (4)
and the Ricker wavelet with respect to time
£(t) = (1 — 22 f2 (¢ — to))eap|—m2F2 (¢ — to)?, (5)

where f; is the source central frequency and t; is the time wavelet delay chosen
as to = 1/fo s.

11

Finite Difference Method.
Numerical example.

Figure 1 presents a typical wavefield pressure snapshot excited by the Ricker wavelet impulse.

t = 0.0000026964

0

0.002

0.004

0.006

> 0.008

0.01

0.012

0.014

0.016 3
0 0.002 0004 0006 0.008 001 0012 0014 0.016 x10712

X

Fig. 1. A snapshot of the pressure component at the time instant 2.69 - 10-6.

12

Approach to parallelization.
Domain decomposition.

The domain decomposition method is a common approach to parallelization of a computational
problem, allowing to split the original problem to several computationally smaller subproblems to be
solved independent of each other or related to each other with the help of boundary conditions. This
makes the domain decomposition method quite a general and convenient tool for parallel computing.

In turn, the efficiency of a multiprocessor computing system is determined by how evenly the

problem solution is distributed over the processes and how much transferring data between
processes is minimized.

Classical MPI Point-to-Point Communications

The elementary MPI routines of data transferring between two processes are the point-to-point routines
of sending and receiving:

* The blocking routines for sending messages between two MPI processes are MP|_Send and MPI|_Recv;
 The non-blocking transfers MPI_Isend and MPI_Irecv.
The blocking operations are somewhat easier to use. However, the non-blocking can be used like this: call

MPI Isend, do some calculations, and then do MPI Wait. This allows computation and communication to
overlap, resulting in improved performance overall.

Point-to-point routines

!I' Data

initialization
! Preparation of the
I for quick

itable ()

search of related processes sece [2]]

do while (t < T)

MPI_Send
MPI_Recv
MPI_Send

(v-
(V-
(V-

X)
X)
y)

MPI_Recv (v _})

I' Calculation

pressure components p.x,p_y

MPI_Send (p_x)
MPI Recv(p _x)
MPI Send (p_y)
MPI_Recv (p_y)

I' Calculation

end do

velocity displacement components v_x

process grid matriz

, U

_y

' Data initialization

! Preparation of the itable ()
I for quick search of related processes sce [2/]]
do while (t < T)

MPI_ I%@nd(X)

MPI Irecv (v _x)

MPI_Isend (v_y)

I\[Pl,hecx(V)

! Calculutwn pressure components p_x,p_y
' at the interior points of subdomain
MPI_Waitall ()

! Calculation pressure components p_x.p_y

' at the boundary points

MPI_Isend (p_x)

MPI Trecv (p x)

MPI Isend (p_v)

MPI_Irecv (p_v)

I Calculation displacement components wv_x,
! at the interior points of ubdomain

MPI_Waitall ()

I Cualeculation

velocity

velocity displacement components v_x
! at the boundary points
end do

process grid matriz

v_

, U

Y

Y

Coarray Fortran

Instead of using the MPI send and receive point-to-point routines, we will take advantage
of the new opportunities for exchanging data between processes provided within the
Coarray Fortran approach.

History of Coarray Fortran

Co-Array Fortran is defined by:

— R.W. Numrich and J.K. Reid, “Co-Array Fortran for Parallel Programming”, ACM Fortran
Forum, 17(2):1-31, 1998

e Integrated into Fortran 2008 standard (approved in 2010)

e Additional information on the web: — www.co-array.org — www.pmodels.org

Coarray Fortran Memory Model

p q

PROBLEM

@ Coarray

x(1) x(1) x(1) X(l)[Cﬂ= x(1)
x(n) x(n) x(n) X()[p] x(n)

x(1)

XJH)

17

What is Co-Array Syntax?

Co-Array syntax is a simple extension to real :: s[*]
normal Fortran syntax. real :: a(n)[*]
— |t uses normal rounded brackets () to point to data
in local memory.

— |t uses square brackets [| to point to data in
remote memory.

— Syntactic and semantic rules apply separately but
equallyto () and [].

complex :: z[*]

rrrrrrr

Declaring and allocating Fortran co-arrays

REAL, DIMENSIONC(:,:) :: A ! Private array.
REAL, DIMENSION(:,:)[*] :: B ! Co-array

ALLOCATE (A(C M, N), STAT = IERR) ! Allocating private array
ALLOCATE (B(M, N)[*], STAT = IERR) ! Allocate co-array.

A(1) = B(2)[7] ' All images load B(2) from image 7 into their A(1).
A(5) = B(3) ! All images load their B(3) into their A(5).

Domain Decomposition

MP] Coarray
real :: u(0:N+1, 0:M+1) real :: u(0O:N+1, 0:M+1)[pN,*]

call mpi_isend(u(1,1:M), M, mpi_real, top(myid), tag1,...) | u(N+1,1)[top(1),top(2)] = u(1,1:M)
call mpi_irecv (u(N+1,1:M), M, mpi_real,bottom(myid), tag1,...) | u(0,1:M)[bottom(1),bottom(2)] = u(N,1:M)
call mpi_isend(u(N,1:M), M, mpi_real,bottom(myid), tag2,...) | u(1:N,0)[right(1),right(2)] = u(1:N,M)
call mpi_irecv (u(0,1:M), M, mpi_real, top(myid), tag2,...) | u(1:N,M+1)[left(1),left(2)] = u(1:N,1)
call mpi_isend(u(1:N,M), N, mpi_real, right(myid), tag3,...) | sync all
call mpi_irecv (u(1:N,0), N, mpi_real, left(myid), tag3,...)
call mpi_isend(u(1:N,1), N, mpi_real, left(myid), tag4,...)
), N, mpi_real, right(myid), tag4,...)

Z Z2Z2Z

call mpi_irecv (u(M+1,1:N),
call mpi_waitall(...)

Domain Decomposition with Coarray

' Data initialization

' Ensuring that data is initialized before

! being accessed from other images

sync all

do while (t < T)

if (current_image(1) > 1)

\,X(c)=v_x(nx—1,:)[current_image(1)—1,current_image (2)]
(Cullpnt image(2)>1) &
v(i,1)=v.y(:,ny—1)[current_image (1),current_image (2)—1]
f Cruuruntce that all images are loaded

sync all

I Calculation wvelocity displacement components v_x,v_y
if (current_image (1) < number_iprocs)

p x(nx,:)=px(2,:)[current_image (1)+1,current_image (2)]

f (current_image(2) < number_jprocs)
pyv(:,ny)=p.y(:,2)[current_image (1), current_image (2)+1]

!' Guarantee that all images are loaded

syne all

I' Calculation pressure components p_x.p_y

end do

Testing and Analysis

Testing was carried out on the computers of the Siberian Branch of the Russian Academy of Sciences
Siberian Supercomputer Center NKS-1P.

To compare the blocking, non-blocking point-to-point routines and the Coarray Fortran, we carried out
the test computations of wavefields propagation through a homogeneous medium.

The size of the problem (3) depends on the size of the computational domain. We use the two-
dimensional domain decomposition for parallelization and decompose the computational domain into
superposition of the equal squares.

We measured the computational times for problems with corresponding
t0162,32%,64%,128%,2564,512%,1024%,2048%,4096° elements in each subdomain.

Testing and Analysis

Table 1. The computational time comparison of the blocking, the non-blocking MPI 104 ' !
routines and the Coarray Fortran using 32 shared memory processes on one node. —6— MPI block
Subdomain/Domain |Time (s) Time (s) Time (s) Accelera- |Accelera- 103 ¢ igpl noreblogk
elements |elements |MPI block-|MPI non-|Coarray tion K tion Ko seiay
ing blocking
162 32.16% |0.7112 0.8354 1.8702 0.85133 0.38028 ol ()2 3
322 32322 0.8023 0.9521 1.5837 0.84266 0.50660 ;
647 32.647 |0.9644 1.0242 1.7398 0.94161 0.55432 E 1
1282 32-128% |1.7282 1.9274 2.9875 0.89665 0.57848 10°F
2562 32.256% |13.4545 13.2655 15.2554 1.01425 0.88195
5122 325122 |58.0052 55.7663 59.4654 1.04015 0.97544 100 L
10242 3210247 |235.748 231.423 229.871 1.01869 1.02557
20482 32 - 20487 |950.391 938.779 931.316 1.01237 1.02048
40962 32 - 4096 |7289.87 7224.81 7197.64 1.00901 1.01281 10-1 01 1 (I)Z 4 (|)3

Elements

Table 2. The computational time comparison of the blocking, the non-blocking MPI

Testing and Analysis

routines and the Coarray Fortran using 81 processes on 3 nodes.

Subdomain{Domain | Time (s) Time (s) Time (s) Accelera- |Accelera-
elements |elements [MPI block-IMPI non-|Coarray tion Iy tion Ko
ing blocking
162 81-16% |1.9435 2.0923 15.7352 0.92888 |0.12351
322 81-32% |1.8814 2.0553 18.9951 0.91539 0.09905
642 81-64% 2.3584 2.7774 26.5697 0.84914 |0.08876
1282 81-128% |4.3914 4.2807 41.3869 1.02586 |0.10611
2562 812562 [33.6353 33.3587 78.7507 1.00829 0.42711
5122 81-512% [147.062 139.319 203.012 1.055568 |0.72440
10242 81 -1024%|596.154 546.412 669.766 1.09103 |0.89009
20482 81 - 20482 |2438.56 2268.14 3201.47 1.07514 0.76170
40962 81 - 40962 |18280.8 18191.1 19032.1 1.00493 0.96052
6144* 81 -6144% |72257.6 68475.1 70315.3 1,05523 1,02762

—&—MPI block
—e— MPI non-block
—&— Coarray

102

Elements

10°

Testing and Analysis

Table 3. The computational time comparison of the blocking, the non-blocking MPI 106 ' '
routines and the Coarray Fortran using using 169 processes on 6 nodes. o P! block
Subdomain|Domain |Time (s) Time (s) Time (s) Accelera- |Accelera- —©—MPI non-block
elements |elements |MPI block-|MPI non-|Coarray tion iy tion Ko —6— Coarray
ing blocking 104 :
162 169 - 162 |3.8883 4.6066 64.4715 0.84407 [0.06031 o
322 169 - 322 |5.5972 5.0899 69.8915 1.09967 |0.08008 6’
642 169 - 642 |6.0715 5.5972 85.9082 1.08474 |0.07067 E
1282 169 - 1282 19.8369 9.6963 125.546 1.01450 |0.07835 102 +
2562 169 - 2562 [71.9304 69.1176 225.179 1.04070 |0.31944
5122 169 - 5122 |308.099 289.368 503.697 1.06473 |0.61168
10242 169-1024%(1286.59 1235.63 1701.49 1.04124 |0.75615
20482 169-2048%(5112.81 4698.08 7261.31 1.08828 |0.70412 0 , |
40962 169-40962(39476.1 39346.7 40761.5 1.00329 |0.96847 ! 01 01 1 02 1 03
61442 169-6144%|146576.0 145210 148365.0 1,00941 0,987941 Elements

Conclusion and road map

We have compared various data exchanges between processes based on the blocking,
the nonblocking MPI point-to-point routines, as well as the new features of the Fortran
language based on the Coarray Fortran technique.

For the study, a two-dimensional wave equation that describes the propagation of
acoustic waves in inhomogeneous media and written down in the form of a first order
hyperbolic system for the vector of displacement velocity and pressure was taken as a
test problem. As a numerical solution method, the method of finite differences of the
second order of accuracy in spatial variables and time on staggered grids was used to
numerically solve the problem.

The domain decomposition method was used for parallelization into processes to divide
the computational domain into smaller subdomains with overlapping.

We change the problem sizes as well as various communication approaches to exchange
data between processes. For each version, we have measured the computation time and
the acceleration factor.

Conclusion and road map

We have revealed the advantages of the delayed nonblocking MPI Isend, MPI Irecv and
the Coarray Fortran when the problem size (the number of elements) increases. For the
delayed nonblocking routines, the efficiency can be explained by overlapping
computations against the data transfer background. In the Coarray Fortran, the speedup
is achieved because the shared memory Coarray variables are read and written from any
image, so there is no need to organize data transfers. The graphs show that this approach
will be preferable to all others with an increase in the problem dimension.

Acknowledgements

The research have been supported by the Russian Science Foundation, project 20-11-20112.

The research is carried out using the equipment of the shared research facilities of HPC computing resources at
the Joint Supercomputer Center of RAS and the Siberian Supercomputer Center.

Thank you for attention. Questions ?

