

Russian Supercomputing Days 2021

Analysis of software package usage based on
methods for identifying similar HPC applications

Denis Shaikhislamov, Vadim Voevodin
Research Computing Center of Lomonosov Moscow State University,

sdenis1995@gmail.com

27 September, 2021
Moscow 1

Background

• Moscow State University has Lomonosov-2 supercomputer (#2 in Russia, 4.9

PFlop/s peak, ~1700 nodes).

• Supercomputers provide a lot of useful information about jobs: performance

data, application packages used, resource manager information etc.

• We can analyze this data to find features and patterns in these applications.

• Analyzing this data can help detect similar applications, that can allow us to

solve other important tasks for the administrators.

2

Package detection

• There are variety of program packages that are used by supercomputer users,

like GROMACS, NAMD, NWChem, FlowVision etc.

• Package usage detection can provide insight on what is mostly used, what are

the needs of users.

• There is an existing package detection system based on XALT.

• It replaces linker (ld) and launcher (mpirun) which allows it to see what

libraries were linked, what executable files were launched etc.

• Sometimes it has troubles detecting packages:

• custom builds (renaming paths/executables);

• just doesn’t process some jobs due to failures.

• Similar application detection system can be used to solve the problem.

3

Static method

• Input data – binary file information.

• Function and variable names (terms) are

extracted by “nm” UNIX utility.

• Doc2vec model was used to vectorize terms.

• Cosine similarity was used for vector

comparison.

• Accuracy – 0.9+ compared to XALT.

4

Fetching and preprocessing

of the function names

Doc2Vec model

Distance calculation

between binary files

Using static method for package detection

• We can assume that similar applications also use same packages.

Algorithm:

• When job is launched, we can extract used terms and get its representation

using Doc2Vec model.

• By comparing it to jobs from knowledge base, we can find similar applications.

• Knowledge base consists of computed representation of a job and its package.

• It contains only unique binary files of specific package.

• If we find similar job with a package, we assume that new job also uses that

package.

5

Current state of static method

• The static method is running and processing jobs of Lomonosov-2

supercomputer in real time.

• Each day, administrators get an email containing all cases with detected

packages, both by static method, and XALT.

6
Daily digest of jobs with packages

Evaluation of static analysis

• We processed all the jobs from January to May 2021.

• 27k jobs have been detected using software packages.

• That’s ~22% of total launched jobs in this period (125k).

• In terms of CPU hours used, these jobs take 45.6% of total CPU hours.

7

Package Static + XALT XALT Static
Overlap (% of

total)

Static excluding
XALT (% of

total)
LAMMPS 6066 4207 4676 46.4 30.6

NWChem 2421 1469 1164 8.8 39.3
CP2K 4860 818 4778 15.1 83.1

Amber 422 219 334 31 48.1
Gromacs 6072 4334 4828 50.9 28.6
cabaret 318 77 282 12.9 75.8

MOLPRO 973 973 0 0 0
Firefly 1729 742 1636 37.5 57.1

Examples of XALT and static method of package detection

Evaluation of static analysis

• Static method helped find ~80% more jobs, than XALT alone.

• Sometimes static method can't detect packages, but XALT can, which may be

because of:

• insufficient rights to binary files;

• binary file was changed before processing occurred;

• can’t extract function names from binary file (MOLPRO).

8

Package Static + XALT XALT Static
Overlap (% of

total)

Static excluding
XALT (% of

total)
LAMMPS 6066 4207 4676 46.4 30.6

NWChem 2421 1469 1164 8.8 39.3
CP2K 4860 818 4778 15.1 83.1

Amber 422 219 334 31 48.1
Gromacs 6072 4334 4828 50.9 28.6
cabaret 318 77 282 12.9 75.8

MOLPRO 973 973 0 0 0
Firefly 1729 742 1636 37.5 57.1

Examples of XALT and static method of package detection

Evaluation of static analysis

• Static method also showed real package’s CPU hours utilization.

• Some packages use twice as much CPU hours than we knew before.

• Sorting packages using new information also changes some of their positions.

9 Distribution of CPU Hours spent among jobs with packages

Package version detection problem

• We can use extracted function names and static method to detect also the

version of the package.

• We have multiple prebuilt versions of the most popular packages: LAMMPS,

NWChem, Gromacs.

• There are two ways of approaching the problem:

• We can use unique version’s function names to distinguish them among

themselves.

• We can use static method, but instead of pairing package to executable’s

representation we pair package versions.

• Approach with unique function names is more transparent and

computationally easier.

10

Package version detection problem

Algorithm:

• When we detect that new job use a specific package, we launch package

version detection algorithm.

• We check whether new job’s executable file contains unique function names of

different package versions.

• If such version is found – we assume that new job uses that specific package

version.

11

Evaluation of package version detection

12

Total
2019.4-gcc-

cuda
5.1.1

2020.3-mpi-
cuda

2018-icc 2018-gcc

Total 5013 18 597 337 2072 901

Only custom
builds

1096 0 1 33 0 33

Found versions in GROMACS jobs

• We can clearly see that the method can detect version packages.

• A lot of users that use custom builds use custom versions that are currently are

not installed on Lomonosov-2.

• Pros and cons of custom builds

• + custom modification of package to solve specific problem

• + manual optimization of the package

• - incorrectly built or configured package can greatly impact the

performance of calculations

• Question: can we distinguish custom versions of the package?

Ours vs custom builds

13

Static method for package version detection

14

• Static similar application detection gives the estimate on how jobs are close to

each other – we can use that information for clustering.

• If we cluster custom builds of packages, we can detect specific versions of

packages.

• By analyzing executables in one cluster, we can try to determine which version

was used in that cluster.

New package version detection

15

Total
LAMMPS

2018 CUDA
p100

CUDA
(default)

LAMMPS
2018 CUDA

LAMMPS
29oct20

Unknown v1 Unknown v2

4743 861 257 310 660 445 355

Found versions in LAMMPS jobs

• We clustered LAMMPS jobs using static method.

•We detected more than 10 clusters with different versions.

• Some versions are easily identifiable by binary file/paths analysis.

New package detection

• We can also use static method to

detect new and unknown packages.

• Jobs are labeled by XALT.

• By analyzing clusters in which no

packages were detected, we can get

new and unknown to the system

packages, e.g. XAMG.

• Its not always clear, what packages

are used in some cases (cluster 3).

16

Distribution of unique executables built using

the t-SNE. Highlighted clusters are: 1 — Cabaret,

2 — XAMG, 3 — unknown

Conclusions and future work

• Developed methods of similar application detection show very good results in

solving the problem of package detection.

• Static method:

• improves existing package detection system based on XALT by almost

80%, which gives better understanding on how supercomputer is used by

users;

• helps to detect new package versions that are not preinstalled on

Lomonosov-2 – we found new popular versions of LAMMPS and Gromacs.

In future we want to approach other problems like behavior or execution time

prediction which also can be solved by similar application detection methods.

21

Russian Supercomputing Days 2021

Thank you!

Denis Shaikhislamov
Research Computing Center of Lomonosov Moscow State University,

sdenis1995@gmail.com

27 September, 2021
Moscow

22

