

Greedy Dissection Method for Shared Parallelism in Incomplete Factorization within INMOST Platform

Kirill Terekhov¹

¹Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences

INMOST

INMOST (<u>www.inmost.org</u>, <u>www.inmost.ru</u>) is a short for:

Integrated

Numerical

Modeling and

Object-oriented

Supercomputing

Technologies

- Distributed meshes
- Distributed linear system assembly
- Parallel linear solver
- Automatic differentiation
- Nonlinear system assembly
- Coupling of unknowns and models

First version during 2012 internship at ExxonMobil

Contributors: Igor Konshin, Kirill Nikitin, Alexander Danilov, Ivan Kapyrin, Yuri Vassilevski, Alexei Chernyshenko (INM RAS, IBRAE RAS), Igor Kaporin (CMC RAS) Dmitri Bagaev, Andrei Burachkovski (MSU), Ruslan Yanbarisov, Alexei Logkiy, Sergei Petrov, Ivan Butakov (MIPT), German Kopytov (BFU), Timur Garipov, Pavel Tomin, Christine Mayer (Stanford), Ahmad Abushaikha, Longlong Li (HBKU), et al

Yuri Vassilevski Kirill Terekhov Kirill Nikitin Ivan Kapyrin

Parallel Finite Volume Computation on General Meshes

Deringer

Ruscdays'21

Grids

Dynamic grids

OctreeCutcell example in INMOST-Graphics repository

AdaptiveMesh example for general grid adaptation

Parmetis_AdaptiveRepart

28 September 2021

Ruscdays'21

Models

Jacobian Structure in Multiphysics Problem

Model decomposition for reservoir simulator:

Large systems

• Navier-Stokes system:

$$\frac{\partial \rho \boldsymbol{u}}{\partial t} + \operatorname{div}(\rho \boldsymbol{u} \boldsymbol{u}^T - \mu \nabla \boldsymbol{u} + p \mathbb{I}) = -\frac{\mu}{K_f} \boldsymbol{u},$$
$$\operatorname{div}(\rho \boldsymbol{u}) = 0,$$

• Prothrombin (II):

$$\frac{\partial P}{\partial t} + \operatorname{div}(P\boldsymbol{u} - D\nabla P) = -(k_1\phi_c + k_2B_a + k_3T + k_4T^2 + k_5T^3)P,$$

• Thrombin (IIa):

$$\frac{\partial T}{\partial t} + \operatorname{div}(T\boldsymbol{u} - D\nabla T) = (k_1\phi_c + k_2B_a + k_3T + k_4T^2 + k_5T^3)P - k_6AT,$$

• Clot formation factors (IXa, Xa):

$$\frac{\partial B_a}{\partial t} + \operatorname{div}(B_a \boldsymbol{u} - D\nabla B_a) = (k_7 \phi_c + k_8 T)(B_0 - B_a) - k_9 A B_a,$$

Antithrombin (ATIII):

$$\frac{\partial A}{\partial t} + \operatorname{div}(A\boldsymbol{u} - D\nabla A) = -k_6 A - k_9 A B_a,$$

• Fibrinogen (I):

$$\frac{\partial F_g}{\partial t} + \operatorname{div}(F_g \boldsymbol{u} - D\nabla F_g) = -\frac{k_{10}TF_g}{K_{10} + F_g}$$

Fibrin (la):

$$\frac{\partial F}{\partial t} + \operatorname{div}(F\boldsymbol{u} - D\nabla F) = \frac{k_{10}TF_g}{K_{10} + F_g} - k_{11}F_g$$

Fibrin-polymer:

$$\frac{\partial F_p}{\partial t} = k_{11}F,$$

Inactivated platelets:

$$\frac{\partial \phi_f}{\partial t} + \operatorname{div} \left(k \left(\phi_c, \phi_f \right) \left(\phi_f \boldsymbol{u} - D_p \nabla \phi_f \right) \right) = (k_{12} T - k_{13} \phi_c) \phi_f,$$

Activated platelets:

$$\frac{\partial \phi_c}{\partial t} + \operatorname{div} \left(k \big(\phi_c, \phi_f \big) \big(\phi_c \boldsymbol{u} - D_p \nabla \phi_c \big) \right) = -(k_{12}T - k_{13}\phi_c) \phi_f,$$

Platelets mobility:

$$k(\phi_c, \phi_f) = \tanh\left(\pi\left(1 - \frac{\phi_c + \phi_f}{\phi_{max}}\right)\right)$$

Permeability :

$$\frac{1}{K_f} = \frac{16}{\alpha^2} \phi_p^{\frac{3}{2}} (1 + 56\phi_p) \frac{\phi_{max} + \phi_c}{\phi_{max} - \phi_c}, \qquad \phi_p = \min\left(\frac{7}{10}, \frac{F_p}{7000}\right).$$

Bouchnita, A., Terekhov, K., Nony, P., Vassilevski, Y., & Volpert, V.: A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions. PloS one, 15(7), e0235392, 2020

28 September 2021

Ruscdays'21

Large problems

- Suitable for large problem solutions:
 - Black oil problem (previous talk)
 - 3x unknowns per cell
 - 100M and 200M cells (320 cores, INM RAS cluster):

Ca	se	T_{mat}	T_{prec}	T_{iter}	T_{sol}	T_{upd}	N_n	N_l	Y
SPE10									
SPE10	200M	29.6	34.7	64.1	107.5	0.38	428	3.96	

• Memory per core (significant issue!):

Ca				M_{prec}	
SPE10_	_100M	856.7	165.6	558.4	1943.6
SPE10	_200M	1624	346.5	1054.3	4365.6

 Scaled up to **1B of cells** on 9600 Cray cores by Ahmad Abushaika and Longlong Li at HBKU, Qatar.

Large problems

- Suitable for large problem solutions:
 - Poroelasticity problem
 - 4x unknowns per cell
 - **1.2M** cells (INM RAS cluster, Lomonosov):

Machine	N_{proc}	T_{tot}	T_{asm}	T_{prec}	T_{iter}	T_{upd}
	100	15079.4	1119.8	7245.2	4463	479.7
INM RAS cluster	200	8791.2	582.9	3926.2	2800.9	252.4
	400	4637	300.3	1965.6	1374.2	127
Lomonosov supercomputer	700	3536	234.1	1071.1	1112.42	70.5

• **Target**: full-field geomechanical well stability test.

Flagship INMOST Linear Solver

- **Preconditioned BiCGStab(I)** method¹.
- Preconditioner MPI-parallelization using Additive Schwarz Method.
- Preconditioner OpenMP-parallelization using Bordered Block-Diagonal Form^{2,3}. (New!)
- Multi-level preconditioner with deferred pivoting based on the second-order Crout-ILU^{4,5}.
- Condition estimation of the inverse factors determines the coarse system and tunes dropping tolerances^{6,7}.
- Scaling and reordering of the local system before factorization^{8,9,10}.

References

- 1) Sleijpen, G.L.G., Diederik R. F.: *BiCGstab (I) for linear equations involving unsymmetric matrices with complex spectrum.* Electronic Transactions on Numerical Analysis 1.11 (1993): 2000. (Krylov method)
- 2) Grigori, L., Boman, E. G., Donfack, S., Davis, T. A: *Hypergraph-based unsymmetric nested dissection ordering for sparse LU factorization*. SIAM Journal on Scientific Computing, 32.6 (2010): 3426-3446. (Bordered block-diagonal form)
- 3) Duff, I. S., Scott, J. A.: *Stabilized bordered block diagonal forms for parallel sparse solvers*. Parallel Computing, 31.3-4 (2005): 275-289. (Bordered block-diagonal form)
- 4) Li N., Saad Y., Chow E.: Crout versions of ILU for general sparse matrices. SIAM Journal on Scientific Computing 25.2 (2003): 716-728. (Crout-ILU)
- 5) Kaporin, I.E.: *High quality preconditioning of a general symmetric positive definite matrix based on its UTU+ UTR+ RTU-decomposition*. Numerical linear algebra with applications 5.6 (1998): 483-509. (Second-order ILU)
- 6) Bollhöfer, M.: *A robust ILU with pivoting based on monitoring the growth of the inverse factors*. Linear Algebra and its Applications 338.1-3 (2001): 201-218. (Tuning dropping tolerances)
- 7) Bollhöfer, M., Saad Y.: *Multilevel preconditioners constructed from inverse-based ILUs*. SIAM Journal on Scientific Computing 27.5 (2006): 1627-1650. (Computing coarse system)
- 8) Cuthill, E., McKee J.: *Reducing the bandwidth of sparse symmetric matrices.* Proceedings of the 1969 24th national conference. 1969. (Reordering for bandwidth reduction)
- 9) Olschowka, M., Arnold N.: *A new pivoting strategy for Gaussian elimination*. Linear Algebra and its Applications 240 (1996): 131-151. (Maximizing diagonal product)
- 10) Kaporin, I.E.: *Scaling, reordering, and diagonal pivoting in ILU preconditionings*. Russian Journal of Numerical Analysis and Mathematical Modelling 22.4 (2007): 341-375. (Rescaling for condition reduction)

28 September 2021

Ruscdays'21

Additive Schwarz Method

- For MPI-parallelization.
- Global matrix is composed of local blocks.
- Extend blocks to localize the connection.
- Restricted version.

Distributed system

- Local partition outlier
- Remote partition outlier
- Local partition
- Remote partitions

Bordered Block-Diagonal Form

- For OpenMP-parallelization.
- The problem is to find minimum separator for the K-way partitioning. (NP-hard)
- All algorithms are approximate:
 - Greedy dissection (this work).
 - Usual graph packages: Metis, Patoh, Mondriaan. (todo)
- Work with each block in parallel.
- **Differed pivoting** for the **separator**.

Bordered Block-Diagonal Form

• Greedy algorithm:

- $G graph of A, H = G^{T}G graph product.$
- |G_i| predicts **block size** growth.
- |H_i| predicts **separator** growth.
- Using **priority queue** pick a node with minimal growth in both **block** and **separator**.
- Remove the node from G and H graphs and update **priority queue**.
- Sequential 😕

Algor	ithm 1 Greedy dissection.	
1: fune	ction GreedyDissection $(A, parts)$	
	Let $G = (V, E)$, where	▷ Graph induced by matrix
~	$V = \{1, \dots, n\},$	▷ Vertex set
	$G_i = \{\delta_{ij} a_{ij} \neq 0\}.$	▷ Edge set
	Let $H = G^T G$.	⊳ Graph product
	Let $\boldsymbol{\omega}_B = \{ \boldsymbol{\omega}_B^i = \ G_i\ \forall i \in V \}.$	▷ Weight for block growth
_	Let $\boldsymbol{\omega}_S = \{\omega_H^i = \ S_i\ \forall i \in V\}.$	▷ Weight for separator growth
	Let $B_i = \{\emptyset\}, \forall i \in \{1, \dots, parts\}.$	▷ Weight for separator growth ▷ Blocks
~	Let $S = \emptyset$.	▷ Separator
1.0	Let $R = C = V$.	▷ Candidate row and column sets
	Let $P_i = Q_i = 0, \forall i \in \{1,, n\}.$	Rows and columns reordering matrices
	r = c = q = 1.	Row and column index and current block
	while $R \neq \emptyset$ do	
14:	$i = \arg\min_{j \in R} \left(\omega_B^j + \omega_H^j \right),$	\triangleright Minimal growth of both the block and separator
15:	$R = R \setminus \{i\},$	▷ Remove from the candidate set
16:	$P_i = r,$	p remove nom the candidate bet
17:	r = r + 1,	▷ Enumerate row
18:	$B_q = B_q \cup \{i\},$	> Augment current block
19:	if $i \in S$ then $S = S \setminus \{i\}$.	
20:	for $m \in H_i \cap R$ do	
21:	$\omega_m^S = \omega_m^S - 1.$	> Update weights for separator growth
22:	end for	
23:	for $j \in G_i \cap C$ do	
24:	$C = C \setminus \{j\},\$	
25:	$Q_j = c$,	
26:	c = c + 1.	▷ Enumerate column
27:	for $k \in G_j^T$ do	
28:	$\omega_k^B = \omega_k^B - 1.$	▷ Update weights for block growth
29:	if $k \not\in S$ then	
30:	$S = S \cup \{k\},$	
31:	$\omega_k^S=\omega_k^S-1.$	Add row to separator
32:	$\mathbf{ for } \stackrel{\kappa}{m} \stackrel{\kappa}{\in} H_k \cap R \ \mathbf{ do } \ \omega_m^S = \omega_m^S - 1.$	
33:	$\omega_m^S = \omega_m^S - 1.$	▷ Update weights for separator growth
34:	end for	
35:	end if	
$\frac{36}{37}$:	end for	
38:	end for if $ P > P / nanta then$	
39:	if $ B_q \ge R / parts$ then $R = R \setminus S$,	▷ Remove current separator from candidate set
40:	q = q + 1.	▷ Consider next block
41:	q = q + 1 end if	> Consider next block
	end while	
	for all $i \in S$ do	
44:	$P_i = r,$	
45:	r = r + 1.	
	end for	
_	Q = P.	▷ Match row and column indices.
	return [P,Q,B,S]	
	1 function	

SBBD Schur (no diagonal) 157 的自己 ia. En 18

Ordering and Scaling

- Each successive level is **reordered** and **rescaled**:
 - Reorder to maximize diagonal product. (famous MC64)
 - partially sequential 😕
 - may apply **in parallel** to independent blocks, but **reduce** Schur quality.
 - Rescale into I-dominant matrix.
 - Reorder symmetrically with bandwidth or fill-in reduction algorithm in each block.

Preprocessing methods

Bandwidth reduction

Bandwidth reduction

Ruscdays'21

Complete blood coagulation problem.

• 13 equations per cell.

- Navier-Stokes problem only.
- 4 equations per cell.
- Fill-in reduction (METIS) is 4 times slower than bandwidth reduction (RCM) algorithm.
- Quite dense matrix graph, big separator.

28 September 2021

20

Second-order Crout Incomplete LU

- Dual-threshold dropping:
 - **T²** for factorization.
 - **T** for iterations.
- Running condition estimation:

- $\mathbf{\kappa} = \max(|L^{-1}|, |U^{-1}|)$
- **T/K=**CONSt tuning.
- Limit growth of κ .

Transposed matrix traversal:

Schur Complement

- Part that leads to growth of κ is accumulated in C:
 - system reordering after factorization.
- Next level system is the Schur complement:

- $S = C - E (DU)^{-1} D(LD)^{-1} F.$

- Requires forward and backward substitution with sparse right hand side.
- Fill-in control is critical.
- Parallel 🙂

Partially factorized DBBD matrix:

28 September 2021

Analogy to the Algebraic Multigrid

- **Coarse** system should contain the **largest error** of the **smoother**.
- Condition estimation reveals the error in the smoother and provides the coarse-fine splitting of the system.
- Ideal prolongation $P=(-EB^{-1},I)$ and restriction $R=(-FB^{-1},I)^{T}$.
 - (not satisfied by the present method).
- Schur complement corresponds to the **coarse** system.
- Universal but much more computationally complex.
 - (definitely not linear computational complexity)

100x100x100 Poisson problem

Black-oil problem with 1M cells

							t h noo da	1	1	0	4	0	16
threads	1	1	2	4	8	16	threads	1	1	2	4	0	
T_{tot}	42.7	47	29.2 (1.6x)	20.2(2.3x)	13.4 (3.5 x)	10.8 (4.3x)	T_{tot}	46.3	56.6	44.7 (1.3x)	37.2 (1.5x)	30.5 (1.9x)	29.4 (1.9x)
iters	17	23	27	25	27	29	iters	19	30	30	32	29	35
T_{iter}	6	7.8	4.77 (1.6x)	3.2 (2.4x)		1.64(4.8x)	T_{iter}	11.3	25	14.2 (1.8x)	10.7 (2.3x)	6.3 (4x)	6.1 (4.1x)
levels	1	2	5	6	7	7	levels	1	5	6	8	9	10
pivots	0	40564	63588	85689	109995	142988	$_{ m pivots}$	0	167799	201296	278060	355152	458293
T_{prec}	36.2	38.7	23.9 (1.6x)	16.5(2.3x)	10.8 (3.6x)	8.6 (4.5x)	T_{prec}	33.7	30.2	29.1 (1x)	25.2(1.2x)	22.9 (1.3x)	22 (1.4x)
T_{ord}	0.5 (1.4%)	0.7 (2%)	2.6 (11%)	2.4 (15%)	2.3 (21%)	2.55 (29%)	T_{ord}	5.4 (16%)	5.5(18%)	13.1 (45%)	13.3 (53%)	12.3 (54%)	11.5 (52%)
T_{mpt}	0.3 (0.8%)	0.4(1%)	0.4 (1.6%)	0.4(2.4%)	0.41(3.7%)	0.44(5%)	T_{mpt}	2.9 (9%)	2.8(9%)	2.4 (8%)	2.4 (9 %)	2.3 (10%)	2.4 (11%)
T_{snd}	- (-%)	- (-%)	1.9 (8%)	1.9 (11%)	1.8 (16.6%)	2.04(24%)	T_{snd}	- (-%)	- (-%)	7.9 (27%)	8 (32 %)	7.8 (3 4%)	7.8 (36 %)
T_{rcm}	0.2 (0.6%)	0.4(1%)		0.17(1%)	0.1 (0.9%)	0.06(0.8%)	T_{rcm}	2.5 (7%)	2.7 (9%)	2.8 (10%)	2.9 (11%)	2.3 (10%)	1.2 (5.5%)
	0.9 (2.5%)	1 (2.7%)	0.5(2.1%)	0.33(2%)	0.2 (1.9%)	0.17(1.9%)	T_{sc}	4.4 (13%)	4.6 (15%)	2.6 (9%)	1.7 (7%)	1 (4%)	0.8 (4%)
T_{fact}	34.2 (95%)	12.7 (23%)	6.3 (26.4%)	4 (24%)	2.48 (23%)	1.32 (15%)	T_{fact}	20.3 (60%)	9.4 (31%)	5.2 (18%)	3 (12%)	3.1 (13%)	2.4 (11%)
T_{schur}	- (-%)	23.7 (71%)	13.9 (58.2%)	9.2 (55%)	5.35 (49%)	4.04 (47%)	T_{schur}	- (-%)	7.1 (23%)	5.2 (18%)	4.8 (19%)	4.3 (19%)	5.2 (24%)

Single-level algorithm

Conclusions and future directions

- Solved memory but not efficiency issues:
 - Sequential algorithm for DBBD form and Schur growth due to increasing deferred pivoting.
- Future directions:
 - Faster algorithm for **DBBD** form.
 - Parallel maximal product transversal.
 - **Block** elimination, **block** pivoting (*reduce deferred pivoting and Schur growth*).
 - Schur computation using ideal restriction and prolongation (more accurate Schur).
- We are working on a very flexible linear solvers framework S³M to address multiphysics problems:
 - Konshin, I., Terekhov, K.: Sparse System Solution Methods for Complex Problems. In International Conference on Parallel Computing Technologies, (2021, September): 53-73. Springer, Cham.

Supported by RSF grant Nº21-71-20024

Thank you for your attention

Contacts

• **KIRILL.TEREHOV@GMAIL.COM**

Links

- <u>WWW.INMOST.ORG</u>
- WWW.INMOST.RU

