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Motivation

The next generation global atmospheric dynamical core is under 
development at INM RAS and Hydrometcentre of Russia

Program complex that are

• Scalable and numerically efficient

model horizontal resolution up to 1 km (1010 degrees of freedom) 

model runtime < 20 min for 1 day forecast

• Flexible 

Wide range of applications (operational forecast, climate 
modeling, long range probabilistic prediction)

Possibility to switch between grids, numerical methods and 
equations set



Motivation

Atmospheric hydro-thermodynamics

• stiff system with phenomena time scales from seconds to months

• severe restriction on explicit methods time step

Semi-implicit time stepping:

• allows to use larger integration time steps

• requires solution of elliptic Helmholtz problem at every time step

• Scalable and numerically efficient solver needed



Semi-implicit methods
Main idea: Implicit approximation only for terms describing fast phenomena

Example

Advection with the speed 𝑐𝑎𝑑𝑣 and gravity 

waves propagation with 𝑐𝑔 = 𝑔𝐻

Assuming 𝑐𝑎𝑑𝑣 ≪ 𝑐𝑔

⇒

Helmholtz type equation

Analogous equation is obtained in 
case of 3D atmospheric equations!



Model problem

After discretizing in space we obtain set of systems of linear equations 

Condition number determined by 
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Atmospheric models horizontal waves 𝐶𝐹𝐿~4 − 10



Model problem. Spatial discretization
Equiangular gnomic cubed sphere grid

• Grid points on cube’s faces determined by

• Differential operators

Finite-difference approximation

• Arakawa C-type variables staggering

• Standard 2nd order formulae

• Bilinear interpolation for transformation covariant->contravariant vector 
components

• Halo interpolation procedure near cube’s panels edges



Solvers description

BiCGstab

• Krylov subspace method. Searches approximate solution 
𝑥𝑚 ∈ 𝑠𝑝𝑎𝑛{𝑏, 𝐴𝑏, 𝐴2𝑏,… , 𝐴𝑚−1𝑏}

• Allows to solve equations with non-symmetric matrices

• Completely matrix-free

Each iteration requires

• 2 matrix-vector products 𝑦 = 𝐴𝑥

• 4 axpy type operations 𝑦 = 𝛼𝑥 + 𝑝

• 4 dot products (𝑥, 𝑦) or (𝑥, 𝑥) – scalability bottleneck



Solvers description

Geometric Multigrid

Eliminates error on sequence of coarser grids Δ𝑥, 2Δ𝑥, 4Δ𝑥, …

• Smoother – weighted Jacobi method

• Restriction operator – 4 point cell average

• Prolongation – bilinear interpolation

• Coarse grid matrices – discretization of initial operator

Condition number determined by 
𝛾𝑘
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At coarse levels 𝐶𝐹𝐿 →
𝐶𝐹𝐿

2𝑘−1
, 𝑘 – number of MG level

For 𝐶𝐹𝐿~4 − 10, it is sufficient to use 4 MG levels



ParCS parallel framework

Along with the development of the model, we also work on our own software 
infrastructure 

ParCS (Parallel Cubed Sphere)

Fortran 2008 object oriented library providing:

• Domain decomposition

• Distributed data storage

• Parallel exchanges

• Input/Output

At multiblock logically-rectangular computational grids



Implementation details

Pure MPI parallel implementation

• Domain decomposed into set of tiles (rectangular 
section of the grid)

• Number of MPI-processes = 6*M*N = number of tiles. 
Ideally M=N

• Halo zones (overlap regions between tiles) exchanges 
strategy



Experiments setup

• Cray XC40 (Roshydromet), Cray ARIES interconnect, Intel Xeon E2697v4 18-
core CPUs, i.e. 36 CPU cores per node.

• Tests for problems at 3 grids:
C216L30 – 46 km horizontal resolution,  8.39x106 grid points
C432L30 – 23 km, 3.36x107 grid points
C1080L30 – 9 km, 2.1x108 grid points

• max𝐶𝐹𝐿 = 7.5 for all grids

• Stopping criterion 
𝑟𝑘

𝑟0
= 10−5



Strong scaling results

46 km problem scales up to 1944
cores 9 km problem at least to
4860 CPU cores

Multigrid method ≈ 4 − 6 times
faster than BiCGstab

24 hour forecast

9km model, 100s time step, 4680 cores 
BiCGstab – 3.6 min,
MG method – 0.6 min,  
of the runtime in solver block 



Strong scaling. BiCGstab components

“matvec” – matrix vector products

“collectives” – vector dot products/norms

“other” – axpy type operations

“collectives” scales only up to 576 CPU cores

Strong scaling of the BiCGstab
components for the problem at
C216L30 grid



Strong scaling. Multigrid levels

Parallel efficiency decrease at the

last two levels.

Strong scaling of the MG
computations at different levels.
C216L30 grid

Hybrid MPI-OpenMP parallelization

Use of single precision for exchanges/computations

at coarse levels. 



Conclusions

• BiCGstab and geometric multigrid solvers for the solution of Helmholtz type 
problem at the cubed sphere grid within ParCS parallel framework

• Both algorithms scales at least up to 4680 CPU cores

• Good starting point for further testing and optimization of the 
implemented solvers and ParCS library within a non-hydrostatic 
atmospheric dynamics model



Thank you for attention!


