
OS for HPC in
Exascale Era

Ruibo Wang
National University of Defense Technology

China

Content

• OS for HPC
• Lightweight kernel
• Full-weight kernel
• Multi-kernel
• Our attempt

Content

• OS for HPC
• Lightweight kernel
• Full-weight kernel
• Multi-kernel
• Our attempt

• Two goals:
• Performance
• Application compatibility

• Performance
• Deliver the maximum capability of the hardware
• Requires thin OS or lightweight OS

• Application compatibility
• To provide Linux environment most application assume
• Requires full-weight OS

OS for HPC

• Trends:
• LWK -> FWK, add Linux environment or API to LWK
• FWK -> LWK, strip Linux to be lightweight
• LWK & FWK, multi-kernel on the same node, aiming to achieve the two

contradictory goals

OS for HPC

Performance & Scalability

App compatibility
LWKFWK

Multi-kernel

Content

• OS for HPC
• Lightweight kernel
• Full-weight kernel
• Multi-kernel
• Our attempt

LWK’s origin

• Early days
• Vector machine, MPP

• Highly specialized chips and architecture, rare commodity hardware

• Apps are highly coupled with hardware system
• Highly involved in hardware management

• Narrow range of app
• Scientific computing

• Small memory on compute node

LWK’s philosophy

• Highly customized OS
• Minimal features

• Low OS noise, highly scalable
• Emphasize efficiency over functionality

• Thin hardware management and abstraction layer
• User-managed

• Small memory footprint

• High message-passing performance

SUNMOS (1991)

• For Intel Paragon (1993), much like an app launcher
• Single tasking

• Application manages all the resources
• Small memory footprint

• Only 16MB on compute node, SUNMOS occupies 250k

Intel Paragon

Catamount (2004)
• SUNMOS for Intel’s Paragon -> Puma ->

Cougar for ASCI Red -> Catamount for Cray’s
XT3/4 (2004)

• Move as much functionalities out to user-
space(PCT) as possible

• Policy part in PCT and mechanism part in QK
• Memory and process management
• Job queueing
• May have several different PCTs

• Compute nodes only focus on high performance
computing

• Relies on service nodes (running Linux) to provide
wide functionalities

Kitten (1999)

• LWK + VMM hypervisor
• Linux env is provided by guest

OS over hypervisor
• Kernel/init are like QT/PCT in

Catamount
• Based on Linux code

• Performance critical part rewritten:
memory management, task
management, virtual memory
management

• Linux ABI and syscall compatible
• Like Linux striping way

Compute Node Kernel (CNK) (2004)

• For Blue Gene/L, Blue Gene/P, Blue
Gene/Q

• Provide Linux-like environment while
keep LWK advantages

• Libc and syscall level

• IO/service proxy
• Delegated to IO/service nodes

• Performance critical
• Non-preemptive scheduler
• Static TLB mapping
• Big memory allocation

Linux compatible line

LWK Focuses on performance

• Design space:
• HPC is more for space-sharing rather than time-sharing

• Process schedule
• Non-preemptive

• Pros: low noise, high scalability – good for HPC

• Cons: limit different combination of threads, overcommit of threads – do not care

• Memory management、Simple memory mapping
• Large page

• Pros: less TLB/cache miss – good for HPC

• Cons: more memory waste – do not care

Content

• OS for HPC
• Lightweight kernel
• Full-weight kernel
• Multi-kernel
• Our attempt

Full-weight Kernel

• Commodity clusters over MPP
• Linux dominated

• Commodity clusters and hardware
• Applications need Linux environment

• Various Commodity hardware is driven by Linux
• A burden work for HPC world to adapt their OS to

• Application developers assume Linux environment
• Various code base and support
• Out-of-the-box running

• Tuning Linux to achieve high performance and scalability

Full-weight Kernel

• The design choices of OSs were most often trade-offs
• Linux is designed for server market, need to be tuned to fit HPC
• Server market vs HPC

Design concerns Server market HPC compute node

Process Scheduling Max overall throughput Max single app performance

Memory management/virtual
space management

Max overall usage, lazy
allocation Max single app performance

IO Frequent Small files access Large file access

Message passing/network Multi-layers, multi-protocol
supported

Max message passing
performance

Less copy

Application compatibility Linux environment Linux environment

Tuning direction

Compute Node Linux (CNL) (2005-2007)

• Catamount for Cray’s XT3/4 -> CNL for Cray’s XT5
• Simplified scheduling, memory management, network, file system
• Large page
• Confine background kernel services and interrupt handling on

some cores

ZeptoOS (2004)
• Ported to IBM Blue Gene’s compute nodes, Linux based
• Memory management: Big Memory

• Large v-p mapping

• Linux can be performance competitive

K OS (2011)

• For K
• Optimize scheduling of system Daemon

K OS (2011)

• For K
• RDMA to send data noiselessly

K OS (2011)

• For K
• Large page

• Reserve some at boot time

Full-weight Kernel

• The design choices of OSs were most often trade-offs
• Linux is designed for server market, need to be tuned to fit HPC
• Server market vs HPC

Design concerns Server market HPC compute node

Process Scheduling Max overall throughput Max single app performance

Memory management/virtual
space management

Max overall usage, lazy
allocation Max single app performance

IO Frequent Small files access Large file access

Message passing/network Multi-layers, multi-protocol
supported

Max message passing
performance

Less copy

Application compatibility Linux environment Linux environment

Tuning direction

Content

• OS for HPC
• Lightweight kernel
• Full-weight kernel
• Multi-kernel
• Our attempt

Multi-kernel

• Achieve the two contradictory goals with two kernels running on
the same node

• Performance – LWK
• App compatibility – Linux

• Many-core and heterogeneous architecture
• Linux on large cores for general service
• LWK on small cores for lightweight computing

FusedOS (2011)

• Successor of IBM CNK
• CNK library (CL) as proxy process

• Syscall offloaded to CL

Hobbes (2013)

• Different jobs in an app calls for different environments
• Key components

• Pisces resource management – hardware resource partitioning
• Kitten LWK
• Palacios VMM

• Kitten LWK + Linux over VMM
• LWK + FWK

McKernel (2012)
• Manages compute node of Fugaku
• McKernel LWK implements

• Performance critical syscall
• Others offload to Linux

• CPU and memory management
• Independent of Linux, standalone code

• Interface for Heterogeneous Kernels
(IHK)

• Communication between FWK and LWK
• Partition of resource

mOS (2014)

• Code integrated into Linux
• Leverage Linux process struct
• Leverage most Linux

• LWK implement performance
critical part

• Scheduling
• Memory management

• Syscall delegation
• by migrating process to FWK

FFMK (2009)

• L4 Microkernel + ��Linux
• LWK first manages hardware
• ��Linux (paravirtualized) as FWK

HermitCore (2016)

• Unikernel
• Can be run directly on bare hardware
• Can act as LWK along with Linux

Multi-kernel

• Promising to achieve high performance and app compatibility
• By partitioning resource and designs to cater to different needs
• What about FWK + several LWK

• many kernels

• To cater to different needs

Content

• OS for HPC
• Lightweight kernel
• Full-weight kernel
• Multi-kernel
• Our attempt

Hardware

Servicejob1 …

OS for HPC

job2 jobn

High throughput
High performance

Our attempt
• We are facing unprecedented diversity in new era
• Different application needs
• Different hardware

app

Low energy

cpu acc1 acc2Co-
processor

Hardware

Service Zone

Service

Communication

Device management

Specialized zone

Our attempt
• Three parts

• Device management and partition
• Service zone
• Specialized zone

Servicejob1 …
job2 jobn

High throughput
High performance

app

Low energy

Hardware

Linux
LWK1 LWKn…

Delegate

Communication

Running env

Service proxy

Hardware
ManagementDevice management

Our attempt
• Three parts

• Device management and partition
• Service zone – a FWK, offers Linux support
• Specialized zone – many LWKs, specialized execution for

different apps

Servicejob1 …
job2 jobn

High throughput
High performance

app

Low energy

Hardware

Linux
LWK1 LWKn…

Delegate

Communication

Running env

Service proxy

Hardware
ManagementDevice management

Our attempt
• To upper applications

• Linux compatibility – provide by service proxy and Linux
• Application running environment – provide by running env

and service proxy

Servicejob1 …
job2 jobn

High throughput
High performance

app

Low energy

Hardware

Linux
LWK1 LWKn…

Delegate

Communication

Running env

Service proxy

Hardware
ManagementDevice management

Our attempt
• To underlying hardware

• Hardware management mechanism – provided by Device
management

• Hardware management policy – provided by different LWK
• To different app needs

Servicejob1 …
job2 jobn

High throughput
High performance

app

Low energy

Our attempt
• Like many kernels
• Large containers

• Contains app env as well as kernel functionalities
• Specialized for application, in terms of both running

environment and hardware management
• Isolation

Proposal for exascale
• Very large scale, 100k+ nodes
• heterogenous, accelerator is inevitable
• CPU centered -> NIC centered

• The control node controls multiple compute node with different
computing resources

• Different accelerators or CPUs
• General services delegated to control
 node
• Network very fast inside a supernode

• On the same board or near

Super node

Control node

CPU NIC

Compute node
Acceler
ator1 NIC

Control through
NIC

Compute node
Acceler
ator2 NIC

Compute node
Compu
te CPU NIC

…

…

Thank you

ruibo@nudt.edu.cn

