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OS for HPC

* Two goals:
* Performance
* Application compatibility
* Performance
* Deliver the maximum capability of the hardware
* Requires thin OS or lightweight OS
* Application compatibility
* To provide Linux environment most application assume
* Requires full-weight OS



OS for HPC

* Trends:
e L[WK -> FWK, add Linux environment or APl to LWK
* FWK -> LWK strip Linux to be lightweight

* LWK & FWK, multi-kernel on the same node, aiming to achieve the two
contradictory goals

Performance & Scalability

FWK LWK
App compatibility

Multi-kernel
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LWK's origin

* Early days
* Vector machine, MPP
* Highly specialized chips and architecture, rare commodity hardware

* Apps are highly coupled with hardware system
* Highly involved in hardware management

* Narrow range of app
* Scientific computing

* Small memory on compute node



LWK's philosophy

* Highly customized OS

* Minimal features
* Low OS noise, highly scalable
* Emphasize efficiency over functionality

* Thin hardware management and abstraction layer
* User-managed

* Small memory footprint

* High message-passing performance



SUNMOS (1991)

* For Intel Paragon (1993), much like an app launcher

* Single tasking
* Application manages all the resources

* Small memory footprint
* Only 16MB on compute node, SUNMOS occupies 250k
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Catamount (2004)

* SUNMOQOS for Intel's

Paragon -> Puma ->

Cougar for ASCI Red -> Catamount for Cray’s

XT3/4 (2004)

* Move as much functionalities out to user-

space(PCT) as possi
* Policy part in PC

Dle
- and mechanism part in QK

° I\/Iemory and process management

* Job queueing

* May have several different PCTs

* Compute nodes onl
computing
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Kitten (1999)

LWK + VMM hypervisor

Linux env Is provided by guest
OS over hypervisor

Kernel/init are like QT/PCT In
Catamount

Based on Linux code

* Performance critical part rewritten:
memory management, task
management, virtual memory
management

Linux ABI and syscall compatible
Like Linux striping way

Kernel Space . User Space

Kitten "Init"
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and setting up address
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spaces. Executable
Launches and manages native (e.g., RHEL, SUSE,
processes and guest virtual Cray Linux, Windows,
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Compute Node Kernel (CNK) (2004)

* For Blue Gene/L, Blue Gene/P, Blue
Gene/Q

* Provide Linux-like environment while
keep LWK advantages

* Libc and syscall level

* |O/service proxy

* Delegated to |O/service nodes
* Performance critical

* Non-preemptive scheduler

 Static TLB mapping
* Big memory allocation
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LWK Focuses on performance

* Design space:
* HPC is more for space-sharing rather than time-sharing
* Process schedule
* Non-preemptive
* Pros: low noise, high scalability — good for HPC
* Cons: limit different combination of threads, overcommit of threads — do not care

* Memory management. Simple memory mapping
* Large page
* Pros: less TLB/cache miss — good for HPC

* Cons: more memory waste — do not care
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Full-weight Kernel

95% Top500 are Linux-like

* Commodity clusters over MPP
* Linux dominated

Operating System

* Commodity clusters and hardware

# of Systems

Percentage

Linux

456

91.20%

Unix

* Applications need Linux environment

22

4.40%

Windows

6

1.20%

* Various Commodity hardware Is driven by Linux

BSD Based

i

0.20%

Mixed

* A burden work for HPC world to adapt their OS to

15

3.00%

* Application developers assume Linux environment
* Various code base and support
* Qut-of-the-box running

* Tuning Linux to achieve high performance and scalability




Full-weight Kernel

* The design choices of OSs were most often trade-offs
* Linux I1s designed for server market, need to be tuned to fit HPC
* Server market vs HPC

Tuning direction
I—

Process Scheduling Max overall throughput Max single app performance
Memory management/virtual Max overall usage, lazy .
. Max single app performance
space management allocation
(@) Frequent Small files access Large file access

Max message passing
performance
Less copy

Multi-layers, multi-protocol

Message passing/network supported

Application compatibility Linux environment Linux environment



Compute Node Linux (CNL) (2005-2007)

* Catamount for Cray’'s XT3/4 -> CNL for Cray’s XT5
* Simplified scheduling, memory management, network, file system
* Large page

* Confine background kernel services and interrupt handling on
some cores
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/eptoOs (2004)

* Ported to IBM Blue Gene’s compute nodes, Linux based

* Memory management: Big Memory
* Large v-p mapping

* Linux can be performance competitive ZCB process’

address space
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K OS (2011)

* For K
* Optimize scheduling of system Daemon

Q Job Syetem Daemon D Vit v Synchronization

" v v v v \
o [N = ] N
sore| ez | I W [ N\ |
oo tovt [T T SN ] N ]
s V V vV V V :
rodet | i | = NN [ NN P

e | ] NN | [

1] 2 | ] | ek
rocetzows {II| ] N | NN\ | "‘“‘”“:‘



K OS (2011)

* For K
* RDMA to send data noiselessly

Using sadc RDMA node observation
(Standard Linux Environment) using rsadc
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K OS (2011)

* For K
* Large page

 Reserve some at boot time

System Processes Job Processes

L= T T

Libraries :
[ glibc
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malloc library for Jobs
[ ]

0S Kernel

| Provides multi-page size \
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SPARC 64 specific memory management




Full-weight Kernel

* The design choices of OSs were most often trade-offs
* Linux I1s designed for server market, need to be tuned to fit HPC
* Server market vs HPC

Tuning direction
I—

Process Scheduling Max overall throughput Max single app performance
Memory management/virtual Max overall usage, lazy .
. Max single app performance
space management allocation
(@) Frequent Small files access Large file access

Max message passing
performance
Less copy

Multi-layers, multi-protocol

Message passing/network supported

Application compatibility Linux environment Linux environment
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Multl-kernel

* Achieve the two contradictory goals with two kernels running on
the same node

* Performance — LWK
* App compatibility — Linux
* Many-core and heterogeneous architecture
* Linux on large cores for general service
* LWK on small cores for lightweight computing



FusedOsS (2011)

e Successor of IBM CNK

* CNK library (CL) as proxy process
* Syscall offloaded to CL

Linux Linux
App A CL CL CNK App App B
F~—— ===~ =-=------ :
Linux i No supervisor mode :
S w —/— — —  TTTTTTTTTmTmTmoees '
Hw
STOC PEC PEC PEC

PEC management
interface

STOC | PEC

CL Application
| i

Load application in
memory

Start apblication
(load TLB & registers)

System caII:/exception 1

)

Service event

4

Resume/stop



Hobbes (2013)

* Different jobs in an app calls for different environments

* Key components

* Pisces resource management — hardware resource partitioning

e Kitten LWK
* Palacios VMM

e Kitten LWK + Linux over VMM
e |[WK + FWK

Application

Hobbes
Runtime

Operating
System

Leviathan Node Manager

Full Linux VM

Vendor Linux

Palacios VMM

(e.g., Cray Linux) Kitten Co-Kernel

Pisces

Kitten Co-Kernel

Compute Node Hardware




McKernel (2012)

* Manages compute node of Fugaku

Proxy process

* McKernel LWK implements
ystem
daemon

* Performance critical syscall ?

* Others offload to Linux
E Kernel
daemon

Application

Linux Delegator
module McKernel

* CPU and memory management
* Independent of Linux, standalone code

* Interface for Heterogeneous Kernels
(IHK)

e Communication between FWK and LWK

IHK-Master | IHK-Slave

OS jitter contained in Linux, LWK is isolated

Interrupt

e Partition of resource



mOsS (2014)

* Code Integrated into Linux
* Leverage Linux process struct
* Leverage most Linux

* LWK implement performance
critical part
* Scheduling
* Memory management
* Syscall delegation

* by migrating process to FWK




FFMIK (2009)

* L4 Microkernel +  Linux
* LWK first manages hardware
* Linux (paravirtualized) as FWK

Application \

------------------------

Decision

Making

|
|
|
|
Platform Management !
|
I
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Linux Kernel
[ |
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HermitCore (2010)

* Unikernel

* Can be run directly on bare hardware
* Can act as LWK along with Linux

App

OpenMP/MPI

Newlib

libos
(LwIP, IRQ, etc.)

S
Hardware




Multl-kernel

* Promising to achieve high performance and app compatibility

* By partitioning resource and designs to cater to different needs

* What about FWK + several LWK

* many kernels
* To cater to different needs
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Our attempt

* We are facing unprecedented diversity in new era
* Different application needs
* Different hardware

app

High throu
High| performance\\LqW energy
i jobn

OS for HPC

Co-



Our attempt

* Three parts
* Device management and partition
* Service zone
* Specialized zone

High throu

High| performance\\LO‘W energy
jobn

Serwce

Communlcatlon




Our attempt

* Three parts
* Device management and partition
* Service zone — a FWK, offers Linux support
* Specialized zone — many LWKs, specialized execution for

different apps
High throughput %
- High erformance\\m‘wenergy
e
et §
Communlcatlon
T




Our attempt

* To upper applications
* Linux compatibility — provide by service proxy and Linux
* Application running environment — provide by running env

and service proxy
High throughput [ ! !
High erformance\\LO‘W energy
jobn

—— Manngement




Our attempt

* To underlying hardware

* Hardware management mechanism — provided by Device
management

* Hardware management policy — provided by different LWK

* To different app needs %
High erformanE\\LO‘W energy
jobn

Delegate

High throughput

Communlcatlon



Our attempt

* Like many kernels

* Large containers
* Contains app env as well as kernel functionalities

* Specialized for application, in terms of both running
environment and hardware management

* [solation




Proposal for exascale

* Very large scale, 100k+ nodes
* heterogenous, accelerator Is inevitable

* CPU centered -> NIC centered

* The control node controls multiple compute node with different
computing resources

* Different accelerators or CPUs
* General services delegated to control
node

* Network very fast inside a supernode
* On the same board or near
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