OS for HPC in
Exascale Era

Ruibo Wang
National University of Defense Technology
China

Content

* OS for HPC

* Lightweight kernel
* Full-weight kernel
* Multi-kernel

* Our attempt

Content

* OS for HPC
* Lightweight kernel
* Full-weight kernel
* Multi-kernel

* Our attempt

OS for HPC

* Two goals:
* Performance
* Application compatibility
* Performance
* Deliver the maximum capability of the hardware
* Requires thin OS or lightweight OS
* Application compatibility
* To provide Linux environment most application assume
* Requires full-weight OS

OS for HPC

* Trends:
e L[WK -> FWK, add Linux environment or APl to LWK
* FWK -> LWK strip Linux to be lightweight

* LWK & FWK, multi-kernel on the same node, aiming to achieve the two
contradictory goals

Performance & Scalability

FWK LWK
App compatibility

Multi-kernel

Content

* OS for HPC

* Lightweight kernel
* Full-weight kernel

* Multi-kernel

* Our attempt

LWK's origin

* Early days
* Vector machine, MPP
* Highly specialized chips and architecture, rare commodity hardware

* Apps are highly coupled with hardware system
* Highly involved in hardware management

* Narrow range of app
* Scientific computing

* Small memory on compute node

LWK's philosophy

* Highly customized OS

* Minimal features
* Low OS noise, highly scalable
* Emphasize efficiency over functionality

* Thin hardware management and abstraction layer
* User-managed

* Small memory footprint

* High message-passing performance

SUNMOS (1991)

* For Intel Paragon (1993), much like an app launcher

* Single tasking
* Application manages all the resources

* Small memory footprint
* Only 16MB on compute node, SUNMOS occupies 250k

Bl e e

I/O Nodes
Disks
1024 Array 15
Nodes

Array Node

I/O Node

Host
/) yod Application fsmsghandler
usmsghandler C library C library
SUN OS SUNMOS SUNMOS

Catamount (2004)

* SUNMOQOS for Intel's

Paragon -> Puma ->

Cougar for ASCI Red -> Catamount for Cray’s

XT3/4 (2004)

* Move as much functionalities out to user-

space(PCT) as possi
* Policy part in PC

Dle
- and mechanism part in QK

° I\/Iemory and process management

* Job queueing

* May have several different PCTs

* Compute nodes onl
computing

* Relies on service_no

wide functionalities

y focus on high performance

des (running Linux) to provide

Process
Control
Thread

Application Process
(up to 4, but typically 1)

Quintessential Kernel

Service +

Processors

Compute
Processors I/O processors (Linux)

(Catamoun

Speed
External
Network

Kitten (1999)

LWK + VMM hypervisor

Linux env Is provided by guest
OS over hypervisor

Kernel/init are like QT/PCT In
Catamount

Based on Linux code

* Performance critical part rewritten:
memory management, task
management, virtual memory
management

Linux ABI and syscall compatible
Like Linux striping way

Kernel Space . User Space

Kitten "Init"
Task

Responsible for allocating
physical hardware resources
and setting up address

Single-
Threaded
Process

Unmodified Linux ELF

Multi-

Threaded

Process

Guest
Virtual
Machine

Unmodified Guest OS
image

spaces. Executable
Launches and manages native (e.g., RHEL, SUSE,
processes and guest virtual Cray Linux, Windows,
A machines. Catamount etc.)
Kitten Kernel '\ f ¢
Linux Syscall I
Physical Memory API & ABI PaIaC|OS
Management VM M
— Address Space Kitten VFS Layer
% Management T
"3l Task Management Ramdisk Remote
= and Scheduling Files Files
Virtual Machine
Monitor Management Bootstrap, Networking Device Drivers
MP Table, Portals, TCP/IP(lwIP), Console, Network,
ACPI, PCI Infiniband (OFA) Block, XEMEM, etc.

Compute Node
Hardware

Processors
L

Memories H

Network
Interfaces
|

L

L

Compute Node Kernel (CNK) (2004)

* For Blue Gene/L, Blue Gene/P, Blue
Gene/Q

* Provide Linux-like environment while
keep LWK advantages

* Libc and syscall level

* |O/service proxy

* Delegated to |O/service nodes
* Performance critical

* Non-preemptive scheduler

 Static TLB mapping
* Big memory allocation

User Application

MPI OpenMP ESSL
SP| pthreads GLIBC Runtime
== | = Linux eompatible line
v N
Syscall Interface
Process/
MU SZ?:C’ Topology | | File I/O Sockets | | Signals Thread
Ty Management
Memory CNVerbs ...A‘
Hardware | anager (Function Shipping Transport Layer)
Configuration| MUDM
Job
Control
CNK T
Common Node Services
Bootloader torus
Firmware
BG/Q Hardware Devices
10 Services on

I/0 Node

LWK Focuses on performance

* Design space:
* HPC is more for space-sharing rather than time-sharing
* Process schedule
* Non-preemptive
* Pros: low noise, high scalability — good for HPC
* Cons: limit different combination of threads, overcommit of threads — do not care

* Memory management. Simple memory mapping
* Large page
* Pros: less TLB/cache miss — good for HPC

* Cons: more memory waste — do not care

Content

* OS for HPC

* Lightweight kernel
* Full-weight kernel
* Multi-kernel

* Our attempt

Full-weight Kernel

95% Top500 are Linux-like

* Commodity clusters over MPP
* Linux dominated

Operating System

* Commodity clusters and hardware

of Systems

Percentage

Linux

456

91.20%

Unix

* Applications need Linux environment

22

4.40%

Windows

6

1.20%

* Various Commodity hardware Is driven by Linux

BSD Based

i

0.20%

Mixed

* A burden work for HPC world to adapt their OS to

15

3.00%

* Application developers assume Linux environment
* Various code base and support
* Qut-of-the-box running

* Tuning Linux to achieve high performance and scalability

Full-weight Kernel

* The design choices of OSs were most often trade-offs
* Linux I1s designed for server market, need to be tuned to fit HPC
* Server market vs HPC

Tuning direction
I—

Process Scheduling Max overall throughput Max single app performance
Memory management/virtual Max overall usage, lazy .
. Max single app performance
space management allocation
(@) Frequent Small files access Large file access

Max message passing
performance
Less copy

Multi-layers, multi-protocol

Message passing/network supported

Application compatibility Linux environment Linux environment

Compute Node Linux (CNL) (2005-2007)

* Catamount for Cray’'s XT3/4 -> CNL for Cray’s XT5
* Simplified scheduling, memory management, network, file system
* Large page

* Confine background kernel services and interrupt handling on
some cores

160

Up to 4.7X slower if
Corespec is not used (-r 1)

140

120

Microseconds
o ®@ o
o Lo) L=}

s
L=

[
o

o

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Nodes

/eptoOs (2004)

* Ported to IBM Blue Gene’s compute nodes, Linux based

* Memory management: Big Memory
* Large v-p mapping

* Linux can be performance competitive ZCB process’

address space

Streaming copy Random access
_ V&g T _
) = PR, R, 800 m Big Memor VMA
D 2,000 = - Y S
Py = Big Memory | LB
= 600 B entries
'-g Le RBE @R 2 e = | Paged memory | PTEs
8 §8z BE3 REL g e
g 1,000 " 400 g Paged memory / agemsmon
<) “ = =
O 10\—0 3 0\0 (] \O o \Z
GEJ 500 |:||:||:| |:||:||:| |:||:||:| ~ % § ° EARIC 9 200 qE) Paged memory N
= > Hg EU i § S =

16 256 4096 16384 16 256 4096 16384 Kernel memory

Buffer size [KiB] Buffer size [KiB]

[JCNK[]Linux with 4 KiB pages [___] Linux with 64 KiB pages [Linux with Big Memory

K OS (2011)

* For K
* Optimize scheduling of system Daemon

Q Job Syetem Daemon D Vit v Synchronization

" v v v v \
o [N =] N
sore| ez | I W [N\ |
oo tovt [T T SN] N]
s V V vV V V :
rodet | i | = NN [NN P

e |] NN | [

1] 2 |] | ek
rocetzows {II|] N | NN\ | "‘“‘”“:‘

K OS (2011)

* For K
* RDMA to send data noiselessly

Using sadc RDMA node observation
(Standard Linux Environment) using rsadc

Compute nodes /O node Compute nodes /O node

ksadc rsadc
sadc daemon NFS server f T

L 4 1 10 Tofu 5 Tofu
Tofu ¢ 5 Tofu { ——
" -

gy,

K OS (2011)

* For K
* Large page

 Reserve some at boot time

System Processes Job Processes

L= T T

Libraries :
[glibc

— 1 — -

malloc library for Jobs
[]

0S Kernel

| Provides multi-page size \

| ‘ \ = _I
|

/wrtual memaory management
Huge TLB FS |

Large Page Management for Jobs

' Page reservation for Jobs on boot time ™

—_—

Prysical memory management

Standard Buddy Page Pool } ‘—:
| TLB management & Stack allocation [~

Buddy Page Pool for Jobs

SPARC 64 specific memory management

Full-weight Kernel

* The design choices of OSs were most often trade-offs
* Linux I1s designed for server market, need to be tuned to fit HPC
* Server market vs HPC

Tuning direction
I—

Process Scheduling Max overall throughput Max single app performance
Memory management/virtual Max overall usage, lazy .
. Max single app performance
space management allocation
(@) Frequent Small files access Large file access

Max message passing
performance
Less copy

Multi-layers, multi-protocol

Message passing/network supported

Application compatibility Linux environment Linux environment

Content

* OS for HPC

* Lightweight kernel
* Full-weight kernel
* Multi-kernel

* Our attempt

Multl-kernel

* Achieve the two contradictory goals with two kernels running on
the same node

* Performance — LWK
* App compatibility — Linux
* Many-core and heterogeneous architecture
* Linux on large cores for general service
* LWK on small cores for lightweight computing

FusedOsS (2011)

e Successor of IBM CNK

* CNK library (CL) as proxy process
* Syscall offloaded to CL

Linux Linux
App A CL CL CNK App App B
F~—— ===~ =-=------ :
Linux i No supervisor mode :
S w —/— — — TTTTTTTTTmTmTmoees '
Hw
STOC PEC PEC PEC

PEC management
interface

STOC | PEC

CL Application
| i

Load application in
memory

Start apblication
(load TLB & registers)

System caII:/exception 1

)

Service event

4

Resume/stop

Hobbes (2013)

* Different jobs in an app calls for different environments

* Key components

* Pisces resource management — hardware resource partitioning

e Kitten LWK
* Palacios VMM

e Kitten LWK + Linux over VMM
e |[WK + FWK

Application

Hobbes
Runtime

Operating
System

Leviathan Node Manager

Full Linux VM

Vendor Linux

Palacios VMM

(e.g., Cray Linux) Kitten Co-Kernel

Pisces

Kitten Co-Kernel

Compute Node Hardware

McKernel (2012)

* Manages compute node of Fugaku

Proxy process

* McKernel LWK implements
ystem
daemon

* Performance critical syscall ?

* Others offload to Linux
E Kernel
daemon

Application

Linux Delegator
module McKernel

* CPU and memory management
* Independent of Linux, standalone code

* Interface for Heterogeneous Kernels
(IHK)

e Communication between FWK and LWK

IHK-Master | IHK-Slave

OS jitter contained in Linux, LWK is isolated

Interrupt

e Partition of resource

mOsS (2014)

* Code Integrated into Linux
* Leverage Linux process struct
* Leverage most Linux

* LWK implement performance
critical part
* Scheduling
* Memory management
* Syscall delegation

* by migrating process to FWK

FFMIK (2009)

* L4 Microkernel + Linux
* LWK first manages hardware
* Linux (paravirtualized) as FWK

Application \

Decision

Making

|
|
|
|
Platform Management !
|
I
|

Checkpoint
Proxies
Infiniband
Linux Kernel
[|

- & R R R I R R R R B

Compute cores Service cores

MPI Library

Monitor | Chkpt. & Infiniband

Runtime |

HermitCore (2010)

* Unikernel

* Can be run directly on bare hardware
* Can act as LWK along with Linux

App

OpenMP/MPI

Newlib

libos
(LwIP, IRQ, etc.)

S
Hardware

Multl-kernel

* Promising to achieve high performance and app compatibility

* By partitioning resource and designs to cater to different needs

* What about FWK + several LWK

* many kernels
* To cater to different needs

Content

* OS for HPC

* Lightweight kernel
* Full-weight kernel
* Multi-kernel

* Our attempt

Our attempt

* We are facing unprecedented diversity in new era
* Different application needs
* Different hardware

app

High throu
High| performance\\LqW energy
i jobn

OS for HPC

Co-

Our attempt

* Three parts
* Device management and partition
* Service zone
* Specialized zone

High throu

High| performance\\LO‘W energy
jobn

Serwce

Communlcatlon

Our attempt

* Three parts
* Device management and partition
* Service zone — a FWK, offers Linux support
* Specialized zone — many LWKs, specialized execution for

different apps
High throughput %
- High erformance\\m‘wenergy
e
et §
Communlcatlon
T

Our attempt

* To upper applications
* Linux compatibility — provide by service proxy and Linux
* Application running environment — provide by running env

and service proxy
High throughput [! !
High erformance\\LO‘W energy
jobn

—— Manngement

Our attempt

* To underlying hardware

* Hardware management mechanism — provided by Device
management

* Hardware management policy — provided by different LWK

* To different app needs %
High erformanE\\LO‘W energy
jobn

Delegate

High throughput

Communlcatlon

Our attempt

* Like many kernels

* Large containers
* Contains app env as well as kernel functionalities

* Specialized for application, in terms of both running
environment and hardware management

* [solation

Proposal for exascale

* Very large scale, 100k+ nodes
* heterogenous, accelerator Is inevitable

* CPU centered -> NIC centered

* The control node controls multiple compute node with different
computing resources

* Different accelerators or CPUs
* General services delegated to control
node

* Network very fast inside a supernode
* On the same board or near

Thank you

rulbo@nudt.edu.cn

